
GENOVATION

Application Note:
MiniTerm USB Low-Level Programming

Revision B
April 2008

Genovation, Inc. Page 2 of 2 Low-Level App Note

DISCLAIMER

The sample code is provided on an "as is" basis, and Genovation, Inc. expressly
disclaims any or all warranties expressed or implied, including without limitation
warranties of fitness for a particular purpose. In no event shall Genovation, Inc.
be liable for any direct, indirect, incidental consequential damages of any kind
whatsoever with respect to the use of the concepts or code.

Genovation, Inc. reserves the right, in its sole discretion and without any
obligation, to make improvements to, or correct any error in any portion of the
document or code.

TABLE OF CONTENTS

1: Introduction ... 3

Objective ... 3
USB Under The Hood ... 4

2: MiniTerm-K (v5.0+) ... 5

Endpoint Assignments .. 5
The Output Report .. 6
The Input Report ... 6
MiniTermK.dll .. 7
MiniTermK_Enumerate().. 7
MiniTermK_Open()... 8
MiniTermK_Close() .. 8
MiniTermK_Write() ... 8
MiniTermK_Read()... 9
TestMiniTermK.exe ... 9

3: MiniTerm (v3.0+)... 10

Endpoint Assignments .. 10
The Output Report .. 11
The Input Report ... 11
MiniTerm.dll... 11
MiniTerm_Enumerate() .. 12
MiniTerm_Open() ... 12
MiniTerm_KbHit() ... 13
MiniTerm_Getch() .. 13
MiniTerm_Write() ... 14
Test9xxDLL.exe .. 14
Further Reading .. 15

Genovation, Inc. Page 3 of 3 Low-Level App Note

1: Introduction

The MiniTerm is a versatile LCD keypad with the following major attributes:

o A 1 x 16 or a 2 x 16 Liquid Crystal Display with backlight.
o 12 key sealed membrane or 20-key Cherry MX full-travel key switches.
o Internal buzzer.
o Optional card reader (barcode scanner, barcode slot reader, magnetic

card slot read, RFID tag reader).
o RS-232 wedge (pass-thru) input.
o Programmable LEDs
o Fully programmable.
o Host connection via RS-232, USB or Ethernet.

It is the last item (host connection) that this application note addresses. More
specifically, host connection via USB. Once it has been decided to connect the
MiniTerm to the host PC using USB, there are still further options that must be
discussed. The table below summarizes the USB host connection choices.

USB 2.0
Class

USB
Speed

USB
Product ID

(Hex)

Comment

HID –
Keyboard

Full
(12Mbps)

0x0606* The MiniTerm-K appears to the host as a typical PC
keyboard (including Multimedia support as of v5.0).
A secondary communication channel with the
device is available via USB Feature Reports.

HID –
Vendor
Defined

Full
(12Mbps)

0x0604* The MiniTerm appears as a device with input and
output capabilities that are general in nature.
Genovation’s MiniTermPro.exe application converts
this generic device into a Virtual Com Port (VCP) for
the end host application.

* When the MiniTerm is connected to the host in PC Keyboard mode, Genovation refers to this
as a MiniTerm-K. Even though any given MiniTerm can operate in any USB or RS-232 host
mode, the internal USB Product ID for the –K version is different from the vanilla MiniTerm USB
implementation. This is handled automatically by the firmware in the MiniTerm.

In both cases the device connects as a type of HID (Human Interface Device).
This means that under Windows, a software developer can access the device at
application level without the need to develop privileged driver-level code.

Objective

The objective of this document and accompanying software is to describe
techniques that can be used to communicate with the MiniTerm directly from a
host application (without employing MiniTermPro). Sample software DLLs are
supplied as examples and are intended only to demonstrate programming
principles. The DLLs themselves are not intended for professional application.

Genovation, Inc. Page 4 of 4 Low-Level App Note

USB Under The Hood

The single USB cable that connects the MiniTerm to the host disguises the
flexibility of the USB interface. The host PC sees the MiniTerm not so much as a
device with a single cable, but as a device with a number of data “pipes”. Using
the terminology of the trade, we say that these pipes are connected to
“Endpoints”. The endpoints are abbreviated “EP” and numbered, as in EP0 or
EP1.

All devices have a “pipe 0” or “Endpoint 0”. This pipe or endpoint is used to
enumerate/configure/initialize the device (tell the host OS what the device is and
what it can and cannot do). This procedure is largely automatic and occurs when
the device is plugged in.

Optionally, there are other data pipes or endpoints that are used to move data
back and forth with the host. In all cases the MiniTerm has the required endpoint
0 and two additional endpoints. IN endpoints move data from the MiniTerm to
the host PC. OUT endpoints move data from the host PC to the MiniTerm.

Host Mode EP0 Function EP1 Function EP2 Function
MiniTerm-K Direction: IN/OUT

- Configuration data.
- Host LED state (E.g.

NumLock).
- Host command set

via a special
Feature Report.

Direction: IN
- Standard PC

keyboard key/macro
data.

Direction: IN
- Multimedia

key/macro data.

MiniTerm Direction: IN/OUT
- Configuration data.

Direction: IN
- ASCII key/macro

data.

Direction: OUT
- Host command set.

For the case of the MiniTerm-K, the MiniTerm key press and card reader data is
sent to the PC application that has the system focus. The user of the PC
determines what that application will be.

For the adventurous programmer, there are ways to attach software to incoming
PC keyboard data. Although not the subject of this application note, the two
methods are Keyboard Hooks and Raw Input Model. Consult the Microsoft
Developer Network for more information.

For the case of the vanilla MiniTerm, MiniTermPro.exe connects to the IN and
OUT pipes and converts that data into a Virtual Com Port (VCP). The application
connected to the VCP determines what to do with the MiniTerm key press and
card reader data. Using techniques discussed later in this application note, you
can connect to the pipes yourself and eliminate the need for MiniTermPro.

Genovation, Inc. Page 5 of 5 Low-Level App Note

2: MiniTerm-K (v5.0+)

If you have chosen to use the MiniTerm in its PC Keyboard (–K) configuration,
you have made the decision to allow the user key data to be sent unmodified to
the application running on the host PC. Therefore, you have also limited the
amount of control you have over this data. You can still use the Host Command
Set to write data to the LCD or for any other feature you wish to use. Consult our
MiniTermPro.PDF for complete description of the command set.

Endpoint Assignments

As previously mentioned, the MiniTerm-K converts key macro data and card
reader data (ASCII values 0x7F and below) to standard PC key codes and sends
them to the host on EP1. If necessary the MiniTerm-K applies the necessary
modifier (Shift or Ctrl).

The MiniTerm-K also converts 24 reserved values (0x80 to 0x97) into multimedia
key codes and sends them to the host on EP2. The multimedia key codes
supported are shown in the table below.

ASCII USB Comment
0x80 0x00B5 Scan Next Track*
0x81 0x00B6 Scan Previous Track*
0x82 0x00B7 Stop*
0x83 0x00CD Play/Pause*
0x84 0x00E2 Mute*
0x85 0x00E5 Bass Boost*
0x86 0x00E7 Loudness*
0x87 0x00E9 Volume Up*
0x88 0x00EA Volume Down*
0x89 0x0152 Bass Up*
0x8A 0x0153 Bass Down*
0x8B 0x0154 Treble Up*
0x8C 0x0155 Treble Down*
0x8D 0x0183 Media Select*
0x8E 0x018A Mail*
0x8F 0x0192 Calculator*
0x90 0x0194 My Computer*
0x91 0x0221 Web Search*
0x92 0x0223 Web Browser/Home*
0x93 0x0224 Web Back*
0x94 0x0225 Web Forward*
0x95 0x0226 Web Stop*
0x96 0x0227 Web Refresh*
0x97 0x022A Web Favourites*

 * Please note that the Multimedia values are only available with firmware v5.00 or higher.

Genovation, Inc. Page 6 of 6 Low-Level App Note

Endpoint 0 is used by the host OS to enumerate the device. As of firmware
v5.00, Genovation has also created a “backdoor” method using Feature Reports
to allow for a programmer to send host commands to the MiniTerm-K.

The Output Report

In order to send data to the MiniTerm-K, the Win32 API command
HidD_SetFeature() is used. The report sent to the MiniTerm-K is in the form
of a six-byte array.

[0] [1] [2] [3] [4] [5]
Report ID Data Length Data Payload
Always 0 0 to 4 Variable Variable Variable Variable

The first byte, Report ID, is always zero. This is simply an identifier for the bus.
The second element, Data Length, is set by the programmer to indicate how
many data bytes are present in the payload. Finally the Data Payload section is
where the host commands (LCD data, etc.) are placed. When more than 4 bytes
need to be sent to the MiniTerm-K, multiple calls to HidD_SetFeature() are
required.

The Input Report

Since the keypad and card reader data are sent as standard PC key codes, the
function of the input report is minimal. To receive an input report from the
MiniTerm-K, the Win32 API command HidD_GetFeature() is used. Again the
report is a six-byte array, but the function is different.

[0] [1] [2] [3] [4] [5]
Report

ID
Firmware
Version

Platform
Word

Status
Word

Always 0 0x50 or higher 0x09 0x04 or 0x05 Variable Variable

The first byte, Report ID, is always zero. This is simply an identifier for the bus.
The second byte is a short form of the version number of the format MSB.LSB.
This will always indicate v5.0 or higher since this feature was not implemented
prior to v5. As of this writing, the next two bytes simply indicate the LCD style.
The value 0x0904 indicates a 1 x 16 LCD while 0x0905 indicates a 2 x 16 LCD.
The final two bytes provide some run-time status information for the device.
Consult the Get and Clear Status Word command from the MiniTermPro User
Guide.

A side effect of reading the input report is that the MiniTerm-K will “chirp”.

Genovation, Inc. Page 7 of 7 Low-Level App Note

MiniTermK.dll

The programming concepts discussed next have all been captured in a sample
DLL called MiniTermK.dll. MiniTermK.dll exports five functions.

extern "C" __declspec(dllexport) int MiniTermK_Enumerate(void);
extern "C" __declspec(dllexport) int MiniTermK_Open(void);
extern "C" __declspec(dllexport) int MiniTermK_Close(void);
extern "C" __declspec(dllexport) int MiniTermK_Write(char *szDataToSend);
extern "C" __declspec(dllexport) unsigned char *MiniTermK_Read(void);

To use the DLL in your own application you must include the header file
MiniTermK.h. In addition you should link your application to MiniTermK.lib and
finally MiniTermK.dll must be in the same directory as your application. A sample
test application has also been included in the archive. This test application
exercises all of the functions in the DLL.

MiniTermK_Enumerate()

In order to communicate with a USB device it is necessary to get a handle that
can be used to access the device via the host OS. In the case of the MiniTerm-K
this tends to be problematic since the host claims exclusive use of devices such
as keyboards, keypads and mice. To get a handle for this type of device it is
necessary to request access without the usual GENERIC_READ or
GENERIC_WRITE attributes. This will prevent us from using ReadFile() and
WriteFile(), but we were not going to use them anyway.

The successful acquisition of a handle to a MiniTerm-K can be used to detect the
presence or absence of an attached device.

There is no technique in place to communicate with one particular MiniTerm-K
when several are attached to the same PC. Using the built-in EEPROM
commands could be used to read and write serial numbers, but it is not a trivial
exercise. It is generally recommended that a vanilla MiniTerm is better suited to
a multi-MiniTerm environment if you need to communicate specifically with a
given device.

In order for the DLL to do it’s work, functions from HIDPI.h, HIDSDI.h,
HIDUsage.h, and SetupAPI.h are called. The sample DLL project also links with
SetupAPI.lib and HID.lib. All of the above are supplied courtesy of Microsoft.

The source code is included in the associated sample archive,
MiniTermKDLL.rar. No attempt here will be made to describe the enumeration
process line-by-line, but the source code is documented. In short, the function
MiniTermK_Enumerate() parses all of the available devices looking for one
that matches the Vendor ID and Product ID for the MiniTerm-K.

Genovation, Inc. Page 8 of 8 Low-Level App Note

extern "C" __declspec(dllexport) int MiniTermK_Enumerate(void);

The function MiniTermK_Enumerate() returns 1 if a MiniTerm-K is attached
and 0 if none are found. If a device is found, the global identifier PathName[] is
filled in for internal purposes.

MiniTermK_Open()

Using the PathName[] filled in by calling MiniTermK_Enumerate(),
MiniTermK_Open() calls CreateFile() to obtain a handle to the MiniTerm-
K. This handle is then stored in the global variable Handle. This handle is
required to move data between the host and the MiniTerm-K.
MiniTermK_Open() calls MiniTermK_Enumerate() so you don’t need to
call MiniTermK_Enumerate() yourself unless you simply want to know if a
device is attached or not without opening it.

The return value is 0 on success. On failure, the return value is 1 if already open
and 2 if there is no device detected.

extern "C" __declspec(dllexport) int MiniTermK_Open(void);

MiniTermK_Close()

This function closes the file handle and then sets the Handle variable to zero. It
returns 0 on success or 1 if you try and close a handle that is not open.

extern "C" __declspec(dllexport) int MiniTermK_Close(void);

MiniTermK_Write()

This function sends a null-terminated string of data to the device. The maximum
length of the string is 32 characters (arbitrary). If the length or null-termination
requirement creates an issue for you, it is a simple matter to recode this function
to accept a length parameter instead. MiniTermK_Write() calls
HidD_SetFeature() in a loop until all of the data is sent.

The function takes one parameter, a pointer to the null-terminated data to write.

If the function proceeds the return value is 0. If the device is not open the
function returns 1. If HidD_SetFeature() fails the function returns 2.

Genovation, Inc. Page 9 of 9 Low-Level App Note

extern "C" __declspec(dllexport) int MiniTermK_Write(char *szDataToSend);

Example: MiniTermK_Write(“@CHello World!@B\x20”);

In the example above the following elements are sent to the MiniTerm-K:

o @C –Clears the LCD.
o Hello World! – Prompt string visible to the keypad user.
o @B\x20 – Beep the internal buzzer for 2016 * 2 = 4016 = 6410ms.

MiniTermK_Read()

This function performs a call to HidD_GetFeature() in order to retrieve the
input report.

If the function succeeds it returns a pointer to the first byte of the input report (the
Report ID byte). If it fails the function returns NULL.

extern "C" __declspec(dllexport) unsigned char *MiniTermK_Read(void);

The data in the input report has been described in an earlier section of this
document.

TestMiniTermK.exe

An additional sample application has been provided that exercises the functions
in the MiniTermK DLL. TestMiniTermK.exe is a Windows command-line
application and the source code for it has been included in the archive as well. It
presents the following menu to the user and calls the DLL functions described
above.

Genovation, Inc. Page 10 of 10 Low-Level App Note

3: MiniTerm (v3.0+)

When configured in vanilla form instead of -K, the MiniTerm is considerably more
flexible. In this configuration there are separate input and output pipes that
provide more functional access to the device since the host OS does not attempt
to claim exclusive access to either of them. Since the device still takes
advantage of HID class USB drivers, the programmer does not need to use
privileged driver-level code. Also, it is much easier to facilitate more than one
device attached to the host.

When the provided MiniTermPro.exe application is used, the data flow looks
something like the following:

MiniTerm <=> USB Hub <=> OS <=> HID <=> MiniTermPro COM Port <=> User Application

It is the objective of this section to explain how the User Application can access
the device(s) using HID level code, thus eliminating the MiniTermPro
“middleware”.

Endpoint Assignments

To the application programmer the vanilla MiniTerm exhibits these
characteristics:

o Feature Report – A 5-byte control report that must be issued to “start” the
MiniTerm.

o EP1 (IN) – An 8-byte IN pipe is used to transfer data from the MiniTerm to
the PC.

o EP2 (OUT) – An 8-byte OUT pipe is used to transfer data from the PC to
the MiniTerm.

Depending on MiniTerm version, the USB connection may be either a low-speed
one (prior to v4.00) or a full-speed one (v4.00+). Low-speed endpoints move an
IN and/or OUT packet every 10ms, full-speed endpoints move a packet every
2ms. This is a function of the internal architecture of the MiniTerm and
associated USB descriptors.

If you are interested, examining the descriptors for the MiniTerm you are working
with will tell you what configuration the MiniTerm is requesting from the host.
There are many tools available that will report the descriptors of any connected
USB device. For example: USBview.exe, UVCView.x86.exe, and many others.

MiniTerms of various versions will co-exist successfully on the same host.

Unlike the MiniTerm-K configuration, full read and write access to the vanilla
MiniTerm is obtained as demonstrated in the sections that follow.

Genovation, Inc. Page 11 of 11 Low-Level App Note

The Output Report

In order to send data to the MiniTerm, the Win32 API command WriteFile() is
used. The report sent to the MiniTerm is in the form of an eight-byte array.

[0] [1] [2] [3] [4] [5] [6] [7] [8]
Report

ID
Data

Length
Data Payload

Always
0

0 to 7 Variable Variable Variable Variable Variable Variable Variable

The first byte, Report ID, is always zero. This is simply an identifier for the bus.
The second element, Data Length, is set by the programmer to indicate how
many data bytes are present in the payload. Finally the Data Payload section is
where the host commands (LCD data, etc.) are placed.

The Input Report

In order to receive data from the MiniTerm, the Win32 API command
ReadFile() is used. Again the report is an eight-byte array.

[0] [1] [2] [3] [4] [5] [6] [7] [8]
Report

ID
Data

Length
Data Payload

Always
0

0 to 7 Variable Variable Variable Variable Variable Variable Variable

The first byte, Report ID, is always zero. This is simply an identifier for the bus.
The Data Length element indicates the amount of returned key/card data (0 to 7
bytes). The remaining bytes contain data, if any. Data elements that are
“unused” may contain any random value.

MiniTerm.dll

The programming concepts discussed next have all been captured in a sample
DLL called MiniTerm.dll. MiniTerm.dll exports six functions.

extern "C" __declspec(dllexport) int MiniTerm_Enumerate(void);
extern "C" __declspec(dllexport) int MiniTerm_Open(void);
extern "C" __declspec(dllexport) int MiniTerm_Close(void);

extern "C" __declspec(dllexport) int MiniTerm_KbHit(void);
extern "C" __declspec(dllexport) unsigned char MiniTerm_Getch(void);

extern "C" __declspec(dllexport) int MiniTerm_Write(char *szDataToSend);

Genovation, Inc. Page 12 of 12 Low-Level App Note

To use the DLL in your own application you must include the header file
MiniTerm.h. In addition you should link your application to MiniTerm.lib and
finally MiniTerm.dll must be in the same directory as your application. A sample
test application has also been included in the archive. This test application
exercises all of the functions in the DLL.

MiniTerm_Enumerate()

In order to communicate with a USB device it is necessary to get a handle that
can be used to access the device via the host OS. This function looks for the
presence of a MiniTerm and saves it’s identifier in the variable szPathName[]. It
can easily extended to look for N MiniTerms by creating an array of pathnames
and looping until SetupDiEnumDeviceInterfaces() returns 0.

The successful acquisition of a handle to a MiniTerm can be used to detect the
presence or absence of an attached device.

In order for the DLL to do it’s work, functions from HIDPI.h, HIDSDI.h,
HIDUsage.h, and SetupAPI.h are called. The sample DLL project also links with
SetupAPI.lib and HID.lib. At run time it uses SetupAPI.dll and HID.dll. All of the
above are supplied courtesy of Microsoft. Depending on compiler, you may be
able to link directly with these modules or you may have to load the DLLs at run-
time.

The source code is included in the associated sample archive, MiniTermDLL.rar.
No attempt here will be made to describe the enumeration process line-by-line,
but the source code is documented. In short, the function
MiniTerm_Enumerate() parses all of the available devices looking for one
that matches the Vendor ID and Product ID for the MiniTerm.

extern "C" __declspec(dllexport) int MiniTerm_Enumerate(void);

The function MiniTerm_Enumerate() returns 1 if a MiniTerm is attached and 0
if none are found. If a device is found, the global identifier szPathName[] is
filled in for internal purposes.

MiniTerm_Open()

Once you have a file name path to the MiniTerm, you can use it in a classic
CreateFile to get a handle to the MiniTerm. Using the PathName[] filled in by
calling MiniTerm_Enumerate(), MiniTerm_Open() calls CreateFile() to
obtain a handle to the MiniTerm. This handle is then stored in the global variable
hMiniTerm. This handle is required to move data between the host and the

Genovation, Inc. Page 13 of 13 Low-Level App Note

MiniTerm. MiniTerm_Open() calls MiniTerm_Enumerate() so you don’t
need to call MiniTerm_Enumerate() yourself unless you simply want to know
if a device is attached or not without opening it.

The return value is 0 on success. On failure, the return value is 1 if already open
and 2 if there is no device detected. The value 3 is returned if there is a problem
obtaining a handle.

extern "C" __declspec(dllexport) int MiniTerm_Open(void);

In order for a vanilla MiniTerm to start moving data, the device needs to receive a
feature report from the host. Therefore, MiniTerm_Open() calls
HidD_SetFeature() to perform this task. As of this writing, the MiniTerm
doesn’t particularly care about the data content, just that the report is correctly
received.

To prevent receive data loss, and to prevent program hanging while waiting for
input data, a simple thread is used to collect data from the MiniTerm. This thread
continually requests input reports using ReadFile(). A small circular buffer is
used to store any data received from the MiniTerm. In the interests of
introducing the concept of mutual exclusion, a simple critical section is used to
orchestrate access to the circular receive buffer. A more professional approach
would be to also open the MiniTerm in overlapped mode.

MiniTerm_KbHit()

In support of the provided command-line test application, the DLL exports a
function that indicates whether or not data has been received from the MiniTerm.
Received data from the MiniTerm is automatically enqueued into a circular queue
by the receive thread. The function MiniTerm_KbHit() checks to see if there
is any data in the receive queue.

extern "C" __declspec(dllexport) int MiniTerm_KbHit(void);

If there is data waiting then the function returns non-zero. If the receive queue is
empty, the function returns zero.

MiniTerm_Getch()

The DLL exports a function to dequeue data from the receive buffer. Before
calling this function it is absolutely imperative that the program first test for data
availability using MiniTerm_KbHit(). The function MiniTerm_Getch()
returns the oldest byte of data in the receive queue.

Genovation, Inc. Page 14 of 14 Low-Level App Note

extern "C" __declspec(dllexport) unsigned char MiniTerm_Getch(void);

This function should be called repeatedly as long as MiniTerm_KbHit()
returns non-zero. Exclusive access to the receive queue is controlled by the
critical section.

MiniTerm_Write()

In order to write data to the MiniTerm it is necessary to issue output reports using
WriteFile(). Each output report can contain up to 7 data bytes.

This function MiniTerm_Write() sends a null-terminated string of data to the
device (less the null). The maximum length of the string is 32 characters
(arbitrary). If the length or null-termination requirement creates an issue for you,
it is a simple matter to recode this function to accept a length parameter instead.
MiniTerm_Write() calls WriteFile() in a loop until all of the data is sent.

The function takes one parameter, a pointer to the null-terminated data to write.

extern "C" __declspec(dllexport) int MiniTerm_Write(char *szDataToSend);

If the function proceeds the return value is 0. If the device is not open the
function returns 1. If WriteFile() fails the function returns 2.

Example: MiniTerm_Write(“@CHello World!@B0”);

In the example above the following elements are sent to the MiniTerm:

o @C –Clears the LCD.
o Hello World! – Prompt string visible to the keypad user.
o @B0 – Beep the internal buzzer for 3016 * 2 = 6016 = 9610ms.

Test9xxDLL.exe

An additional sample application has been provided that exercises the functions
in the MiniTerm DLL. Test9xxDLL.exe is a Windows command-line application
and the source code for it has been included in the archive as well. It presents
the following menu to the user and calls the DLL functions described above.

Genovation, Inc. Page 15 of 15 Low-Level App Note

Further Reading

Genovation has some related information in another application note entitled,
“Micropad 623 Serial Keypad Developer Manual”. It can be found at:

http://www.genovation.com/files/623DevManual.pdf

The MiniTerm also has an advanced “Screen Edit Mode” that provides for a
series of predetermined prompts in order to gather multiple fields of input from a
user, but without the need to program the interaction on the host. Please see:

http://www.genovation.com/files/MiniTermProAdvanced.pdf

	DISCLAIMER
	TABLE OF CONTENTS
	1: Introduction
	Objective
	USB Under The Hood

	2: MiniTerm-K (v5.0+)
	Endpoint Assignments
	The Output Report
	The Input Report
	MiniTermK.dll
	MiniTermK_Enumerate()
	MiniTermK_Open()
	MiniTermK_Close()
	MiniTermK_Write()
	MiniTermK_Read()
	TestMiniTermK.exe

	3: MiniTerm (v3.0+)
	Endpoint Assignments
	The Output Report
	The Input Report
	MiniTerm.dll
	MiniTerm_Enumerate()
	MiniTerm_Open()
	MiniTerm_KbHit()
	MiniTerm_Getch()
	MiniTerm_Write()
	Test9xxDLL.exe
	Further Reading

